Non-empirical Calculations of the Electronic Structures of 6a-Thiothiophthen and Related Molecules

By Michael H. Palmer * and Robert H. Findlay, Department of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ

Computations of the ground-state wavefunctions for the title compound, and its 1-oxa-, 1,6-dioxa-, and 1-azaderivatives, are described. A bond energy analysis shows that the molecules have little resonance energy. The title compound shows two lone pair orbitals at the centre sulphur atom, but the 3d orbitals are not heavily involved in the bonding in this series of molecules. The photoelectron spectra are analysed and compared with the π -isoelectronic molecule naphthalene.

THE product from the reaction of phosphorus pentasulphide with heptane-2,4,6-trione was shown¹ to have the spatial arrangement (1a; $R^2 = R^5 = Me$, $R^3 =$ $R^4 = H$) by X-ray crystallography. Since that time the parent compound (1a) and the related isosteres (1b-d) $(R^2 - R^5 = H)$ have been prepared,²⁻⁴ and in all of the four cases the detailed electronic structure has been a controversial subject.⁵ A monocyclic form with the remaining heteroatom in a transoid orientation (2c) can be envisaged but to our knowledge no species (2c) has been synthesised by routes which lead also to species like (la—e). Since the nuclear-nuclear repulsion in (2c) is considerably less than (2a or b), it is clear that the electronic energy of (2c) is also lower and this must imply an X-S and Y-S bond (albeit weak in some instances). We recently reported ⁶ brief results of nonempirical MO calculations aimed at elucidation of the electronic structures of (1a—c and e; $R^2 - R^5 = H$) and now give a detailed description of these studies. The principal aims of the work are therefore to determine from non-empirical wavefunctions (a) whether the 3d orbitals on the sulphur atoms make a significant contribution to the bonding; (b) whether the classical formulation of the molecules (1a--e) with X-S and Y-S bonds is adequate or whether representations such as 2a (or 2b) are more appropriate; (c) whether there is any evidence of aromaticity, provided ring strain allows this to be done; (d) the electronic charge distribution by Mulliken population analysis; and (e) an assignment for the photoelectron spectrum of the parent molecule (la).

Of the possible names for these compounds,^{1,5,7-10} for simplicity in the present work we shall refer to (la-c and e; $R^2 - R^5 = H$) as the trithia-, oxadithia-, dioxathia-, and dithia-azapentalenes since this is the briefest consistent with conveying information on the geometrical arrangement of the atoms.

Computational Methods.---We used the linear combin-

† The best total energy for thioformal dehyde was $-435\cdot6818$ a.u. when the d-orbitals on sulphur were included, and $-435\cdot5946$ a.u. when excluded.

¹ S. Bezzi, M. Mammi, and G. Garbuglio, Nature, 1958, 182,

247.
² D. H. Reid and R. G. Webster, J.C.S. Perkin I, 1972, 1447.
³ D. H. Reid and R. G. Webster, J.C.S. Chem. Comm., 1972, 1447.

⁴ F. Leung and S. C. Nyburg, Canad. J. Chem., 1972, 50, 324. ⁵ N. Lozac'h, Adv. Heterocyclic Chem., 1971, 13, 161.

⁶ M. H. Palmer and R. H. Findlay, Tetrahedron Letters, 1972, 4165.

ation of gaussian orbital (LCGO) approach to the Hartree–Fock method. Carbon, nitrogen, and oxygen atoms were represented by 7 s-type and 9 p-type (3 for each of x, y, z) gaussian functions, hydrogen by 3 s-type, and sulphur by 10 s-type, 18 p-type (6 for each of x, y, z, and 6 d-type (1 for each of $xy, xz, yz, x^2, y^2, z^2$). These functions were contracted to $1s_x$, $2s_x$, $2\phi_x$ (x = C, N, O, or S), $3s_s$, $3p_s$, $3d_s$, and $1s_h$ functions, the 6 *d*-type functions on each sulphur atom providing a further s-type function (3s') as well as the conventional 5 3*d*-orbitals $(xy,xz,yz,x^2 - y^2,z^2)$.¹¹ The gaussian exponents were optimised in terms of total energy in ethylene (C,H), vinylamine (N), vinyl alcohol (O) as described previously,12 and thioformaldehyde (S).† The molecular binding energy is defined as the difference between the total molecular energy (evaluated with the optimised exponents above) and the sum of the atom energies (evaluated with separately optimised exponents for the atoms using a similar number of gaussian type orbitals). These atom energies, in what is conventionally called a 'best atom 'basis, have the following total energies (with the Hartree–Fock values in parentheses): $H(^{2}S) = -0.4971 (-0.5000), C(^{3}P) = -37.6106 (-37.6886),$ $N(^{4}S)$ -54.2754 (-54.4010), O(^{3}P) -74.5121(-74·8090), S(^{3}P) -396·6988 (-297·5050) a.u. It can be seen that the present basis represents >99.7% of the free atom energies at the Hartree-Fock limit.

Geometric Features.—Previous discussion has centred on the question of whether the trithia-compound (1a) has a symmetrical structure owing to resonance between the two equivalent structures (2a and b; X = Y = S) or whether there is an equilibrium between two structures (2a and b). X-Ray crystallographic investigations have confirmed that the parent (1a),¹³ but not the 2,5-diphenyl derivative of (1a) has equal S-S bonds in the solid state.¹⁴ A recent electron diffraction study ¹⁵ of the 7 H. Giacometti and G. Rigatti, J. Chem. Phys., 1959, 30,

1633; K. Maeda, Bull. Chem. Soc. Japan, 1960, 33, 1466; 1961,

34, 785. ⁸ R. A. W. Johnstone and S. D. Ward, Theor. Chim. Acta, 1969, **14**, <u>420</u>.

The Ring Index, Supplement I, American Chemical Society, 1963

¹⁰ Chemical Abstracts Indices, 1972, vols. 76 and 77.

¹¹ A. Rauk and I. G. Csizmadia, Canad. J. Chem., 1968, 46, 1205.

12 (a) M. H. Palmer, A. J. Gaskell, and M. S. Barber, Theor. Chim. Acta, 1972, 28, 357; (b) M. H. Palmer and R. H. Findlay, Chem. Phys. Letters, 1972, 15, 416.

F. Leung and S. C. Nyberg, Chem. Comm., 1969, 137.
 A. Hordvik, Acta Chem. Scand., 1968, 22, 2397.

¹⁵ Q. Shen and K. Hedberg, J. Amer. Chem. Soc., 1974, 76, 289.

gaseous molecule (1a) confirms C_{2v} symmetry, but gave insufficient information to determine the relative lengths of the 2.3- and 3.3a-bonds. In these circumstances we feel justified in assuming the X-ray (symmetrical) structure for (1a).^{16,*} Furthermore it seems probable that the asymmetry in the peak obtained for the S_{2p} electron levels in X-ray photoelectron spectra (XPS) for some derivatives 17 is a result of crystal packing forces leading to distortion. For the oxadithia- (1b), dioxathia- (1c), and dithia-aza-molecules (1e) the structures were again based upon the trithia-compound (la), and the heteroatoms were sited to reproduce as well as possible known geometric features. In this way many of the electron repulsion integrals could be used in calculations in all four molecules (1a-c and e).

RESULTS

Total Energy .--- This term is steadily lowered (Table 1) in (la-c and e) as the basis set is extended from the minimal sp (C, N, O, and S) to extended spd + 3s'(S)where a total of eighteen extra functions are added. Several of these basis sets are unbalanced and are included only to show the nearly additive effects of functions which are -130 kJ mol⁻¹ per 3s' orbital (irrespective of position), -25 kJ mol⁻¹ per 3d orbital (terminal sulphur S-1, S-6), and -30 kJ mol⁻¹ per 3d orbital (S-6a). These figures are effectively identical † with those of similar studies ⁶ on thiophen, the thiapyrylium cation, and the 1,2- and 1,3-dithiolium cations, and only marginally larger than the effect of added 3dpolarisation functions to the oxygen atom of furan $(-24 \text{ kJ mol}^{-1} \text{ per function})$.^{12a} The significantly larger effect of the 3s' than the 3d functions for the present series confirms the role of the latter as polarisation orbitals.

The 'strain plus resonance energies,' determined as outlined in the Appendix show a considerable destabilisation compared with that expected from the strain free bond contributions; most of this must be attributed to strain in the two fused five-membered rings.[†] None the less it seems unlikely that these molecules are aromatic in the normal sense; comparable figures are benzene -213, naphthalene -360, and thiophen -145 kJ mol^{-1} , which are in reasonable agreement with both mesomeric energies based upon thermochemical data (-155, -322, and -130 k]

* In an unsymmetrically substituted derivative of (1a), the possibility of detecting isomers (2a and b) becomes real if their energy difference (ΔE) in the Boltzmann distribution $n_{\rm a}/n_{\rm b} =$ $\exp(-\Delta E/RT)$ is not too large. No such pairs of isomers have yet been detected, and this tends to argue against the equilibrium hypothesis.

† Comparable figures for energy increments on added 3s' and 3d orbitals to sulphur are: thiophen: 3s', 126; 3d, 36; thia-pyrylium cation: 3s', 128; 3d, 45; 1,2-dithiolium cation: 3s', 132; 3d, 42; 1,3-dithiolium cation: 3s', 128; 3d, 38 kJ mol⁻¹ respectively.

We noted previously 18 the very strong similarity in the geometry of naphthalene to the hydrocarbon portion of trithiapentalene (1a); on the assumption that there is little strain in the former owing to the near natural valency angles and lengths, we conclude that the strain energy in (1a) arises from the extension of the S-S lengths (ca. 0.32 Å) beyond the sum of the covalent radii.

mol⁻¹) ¹⁹ and magnetic susceptibility out-of-plane nonlocal contributions (35, 79.8, and 34 erg gauss⁻² mol⁻¹).²⁰

Population Analysis.-The results for the trithiacompound (1a) are typical (Table 2). Addition of 3s' and 3d orbitals does not lead to a marked change in total populations, but to a redistribution by different mechanisms. The 3s' orbital removes some population from the other sulphur s orbitals in the order 3s > 2s > 1sand this leads to an increase in valency shell population. In contrast the 3d orbitals redistribute the populations of $3p_{x,y,z}$ (in particular). The populations of the individual 3d orbitals are uniformly low, with only a significant value along the S-S-S and C-S axes $(3d_{x^2-y^2})$. The effect parallels that in a thiophen calculation⁶ using the same basis set; since in the latter case a larger basis 21 reduces the 3d contributions, it seems probable that the present data are more likely to overrather than under-estimate the 3d orbital contributions.

(3c) π -bond moments (full basis, spd + 3s') (3d) π -bond moments '(minimal basis, sp)

0.0161

0.1274

Dissection of the total $\sigma + \pi$ and π populations into bond contributions (3a-d) shows the comparatively

¹⁶ A. Hordvik and L. J. Saethre, Acta Chem. Scand., 1970, 24, 2261.

¹⁷ B. J. Lindberg, S. Högberg, G. Malmsten, J. E. Bergmark,
 Ö. Nilssen, S.-E. Karlsson, A. Fahlman, and U. Gelius, *Chemica Scripta*, 1971, 1, 183.

 ¹⁸ M. H. Palmer, Ann. Reports Chem. Soc., 1971, B, 572.
 ¹⁹ L. Pauling, 'The Nature of the Chemical Bond,' Cornell Univ. Press, Ithaca, 1960, 3rd edn., p. 195. ²⁰ T. G. Schmalz, C. L. Norris, and W. H. Flygare, J. Amer.

Chem. Soc., 1973, 95, 7961. ²¹ U. Gelius, B. Roos, and P. Siegbahn, Theor. Chim. Acta,

1972, 27, 171.

small differences between the minimal and most extended bases. Only with C(3a) is the net atomic population changed in sign and in view of the over-compensation in dipole moment when the 3s' + 3d functions are added,

electrons. The central sulphur atom S(6a) is a π -donor and σ -acceptor, as in thiophen.

Orbital Energies and Photoelectron Spectrum.—Addition of the 3s' orbital to any sulphur atom in the series

			Computed en	nergies and di	pole moments			
1,6,6a-Trithiap	entalene		-					
Basis set S(1), S(6)	sÞ	sÞ	s p + 3s'	sÞ	sþd	sÞ	s p d + 3 s'	sbd + 3s'
S(6a)	sp	sp + 3s'	sp	spd	sp	spd + 3s'	sp	spd + 3s'
(a.u.)	-1381.0944	-1381-1455	-1381-1892		-1381-1883	$-1381 \cdot 2141$	$-1381 \cdot 2838$	$-1381 \cdot 4048$
Binding	-0.9658	-1.0079	-1.0216	-1.0252	-1.0207	-1.0765	-1.1465	-1.2672
energy (a.u.) Strain + resonance ^a	+220							+20 2 d
Dipole		- 3.87	3.85	-3.40	-2.57	-3.40	-2.56	-2.17
6-Oxa-1 6a-Dit	hiapentalene							
Basis set	mapontaione							
S(1) S(6a) Total energy	sp sp 	$sp \ sp + 3s' \ -1059{\cdot}0554$	$sp+3s' \ sp \ -1059.0540$	sp spd 1059:0647	spd sp — 1059·0579	spd + 3s' -1059:1132	spd + 3s' sp $-1059 \cdot 1050$	spd + 3s' spd + 3s' -1059.2111
(a.u.) Binding	-0.9563	1.0044	-1.0030	-1.0137	-1.0069	-1.0622	-1.0540	-1.1601
Strain + resonance energy (kJ	+226,* +195 f							+260,• +165 f
Dipole moment (D) ^{b,c}	4.32	4 ·32	4 ·32	3.78	4 ·18	3.78	4.18	3.70
1,6a-Dithia-6-a	zapentalene							
Basis set S(1) S(6a)	sp sp	sp + 3s'	sp spd	spd + 3s' spd + 3s'				
Total energy	$-1039 \cdot 2279$	$-1039 \cdot 2769$	$-1039 \cdot 2996$	$-1039 \cdot 4435$				
(a.u.) Binding energy (a.u.)	-1.0165	-1.0655	-1.0882	-1.2321				
Strain + resonance energy (kJ	+ 261, ^g + 218 ^h			+263,#+153	٨			
Dipole moment (D)	4.23	4 ·12	3.88	3.02				
1,6-Dioxa-6a-tl	niapentalene							
Basis set S(6a)	sp							
(a.u.)	- 736-8472	- 736-8938	- 736-8984	-736-9440				
Binding energy (a u.)	-0.8829	-0.9295	-0.9341	-0.9797				
Strain + resonance energy (kI)	+394 '							
mol ⁻¹) ^a Dipole moment (D)	3.22	3.23	2.75	2.75				

TABLE 1

⁶ For method of calculation based upon bond energies, see text. ^b The sign convention (cf. M. H. Palmer, R. H. Findlay, and A. J. Gaskell, J.C.S. Perkin II, 1974, 420) has a negative dipole moment in the sense $C^{3+}-S^{5-}$. ^c Experimental values are: 1,6,6a-trithiapentalene 3.01D; 6-oxa-1,6a-dithiapentalene, 3.78D. ^d Based upon 3-thioformylmethylene-1,2-dithiole. ^e Based upon 3-formylmethylene-1,2-dithiole. ^f Based upon 3-thioformylmethylene-1,2-dithiole. ^f Based upon 3-thioformylmethylene-1,2-dithiole. ^f Based upon 3-thioformylmethylene-1,2-dithiole. ^f Based upon 3-thioformylmethylene-1,2-dithiole. ^f Based upon 3-thioformylmethylene-1,2-oxathiole.

it seems probable that C(3a) is probably near neutral. The σ/π separation (3c and d) is based upon an average of the species (2a and b; X = Y = S) the π -atomic contributions being S(1) [= S(6)] 1.5 and S(6a) 2.0 (1a—c and e) increases the binding energy of the core electrons (Table 3), and slightly reduces that of the valency shell region. This last effect also occurs on addition of 3d orbitals but the magnitude is smaller

(0.5 eV maximum total). The change in core binding energy arises directly from the decrease in screening of the nucleus through the transference of core level population to the valency shell upon addition of 3s' orbitals (above).

The He^I photoelectron spectrum of the trithiacompound (1a)²² has been assigned previously on the To extend the assignment to higher IPs it is necessary to assign the groupings as follows: 11.1 (two IPs), 12.8 (four IPS), 15.3 (three IPs), 16.8 eV (two IPs), which are reasonable in the light of the band intensities. This leads to the final correlation line (Figure 1) $IP_{obs} =$ $0.605 \text{ IP}_{calc} + 2.775 \text{ eV}$ with standard deviations in slope, intercept, and overall of 0.009, 0.100, and 0.049 eV.

TABLE 2
Population analyses

(a) 1,6,6a	-Trithia	pentalene s	pd + 3s'	basis	-	opulation	, and yo						
Centre ^a S(1), S(6) S(6a) C(2), C(5) C(3), C(4) C(3a)	1s 1·9956 1·9951 1·9892 1·9888 1·9893	2s 1·9243 1·9190 1·0779 1·0057 1·0682	3s 1∙5477 1∙5824	3s' 0·3440 0·3396	$2p_x$ 1.9910 1.9801 1.1311 0.9492 1.0801	2¢y 1·9842 1·9861 1·0292 1·0993 0·9441	$2p_z$ 1.9950 1.9957 0.8750 1.1594 0.8564	3p _x 1·5103 0·9442	3¢, 1∙0955 1∙2041	3⊅₂ 1.6543 1.7172	3d 0·0898 0·1643	Total 16:1318 15:8280 6:1023 6:2024 5:9382	sp Basis Total 16.0444 15.7309 6.2081 6.1946 6.0421
H(2), H(5) ^b H(3), H(4) ^b	1s 0.8300 0.8474	S(1)	S(6) S(6a)	$3d_{xy} \\ 0.0052 \\ 0.0060$	$3d_{xz} \ 0.0030 \ 0.0085$	3d _{yz} 0∙0165 0∙0156	$\begin{array}{c} 3d_{x^3-y^2} \\ 0.0516 \\ 0.1088 \end{array}$	3d _{32⁸−7³} 0·0135 0·0254					
(b) 1,6-Di	oxa-6a-t	hiapentale	ne spd +	· 3s' basi	s								
S(6a) O(1), C(2), C(3), C(3a)	O(6) C(5) C(4)	Core V (C, O, S) 9·8883 1·9959 1·9901 1·9987 1·9894	Valency s 2s/3s 1.5976 1.8633 1.0036 0.9920 1.0769	hell 0 0 3 5 0 9	3s′ ∙3393	$2p\delta/3p\delta$ 1.7828 3.0822 2.0057 1.9985 2.0440	$2p_{\pi}/3p_{\pi}/3p_{\pi}/3p_{\pi}/3p_{\pi}/3p_{\pi}/3p_{\pi}/2p_{\pi}/3p_{\pi}/2p_{\pi}/2p_{\pi}/2p_{\pi}/2p_{\pi}/2p_{\pi}/2p_{\pi}/2p_{\pi}/3p_{\pi}/2p_{\pi}/3p_{\pi}/2p_{\pi}/3p_{\pi}/$	π 3dε 5 0·08 4 1 5	54 0	3dπ 0•0133	Total 15-5795 8-5149 5-8056 6-2487 5-9277	sp Ba: Tota 15·49 8·51 5·80 6·24 6·02	sis 1 83 23 94 47 58
Hydrog	gen 1s H	(2), H(5) 0	0.8270; I	H(3), H(4)	4) 0·8502								
(c) 6- Oxa	-1,6a-dit	hiapentale	ne spd +	3s' basi	S								
S O C C C C C C	(1)(6a)(2)(3)(3a)(4)(5)	Core (C, O, S 9.8889 9.8843 1.9960 1.9891 1.9889 1.9883 1.9883 1.9887	Valence S) $1s/2s$ 1.54 1.54 1.55 1.66 1.00 1.00 1.00 0.99 0.09 0.99	y shell /3s 457 (785 (674 700 118 674 976 993	3s' 0·3406 0·3383	2p/3p 2·3468 2·0750 3·2483 2·1382 2·0556 2·0282 2·0344 1·9952	2p/3p $1\cdot 8007$ $0\cdot 813;$ $1\cdot 394;$ $0\cdot 9186$ $1\cdot 126^{\circ}$ $0\cdot 8577$ $1\cdot 2162$ $0\cdot 8419$	30 7 0-07 3 0-09 3 3 7 7 2 9	ł 90 (97 (3d 0-0193 0-0176	Total 16·0210 15·8066 8·5060 6·1159 6·1826 5·9423 6·2369 5·8265	sp Ba Tota 15.95 15.72 8.48 6.22 6.17 6.04 6.22 5.82	sis 1 26 76 55 36 58 48 48 16 99
		.(2) 0.8248	, 11(3) 0	0420, 1	1(4) 0.940	9 4 , 11(0)	0.0040						
(a) 1,0a-1 S S N C C C C C	(1) (6a) (2) (3) (3a) (4) (5) (11a-6-3) (12a-6-3) (13a-6-3) (13a-6-3) (13a-6-3) (13a-6-3) (13a-6-3) (13a-6) (13a-6	Core (C, N, S 9.8895 9.8797 1.9927 1.9892 1.9885 1.9885 1.9885 1.9885	$\begin{array}{c} \text{ne spa} + \\ \text{Valency} \\ \text{Valency} \\ \text{S} \\ \text{S} \\ 1 \cdot 5 \\ 1 \cdot 0 \\ 0 \cdot 9 \\ 0 \\ 1 \cdot 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	y shell 3s 454 790 250 745 054 654 967 455	s 3s' 0·3423 0·3325	2p/3p 2·5965 2·0735 2·4621 2·1525 2·0529 2·0175 2·0289 2·0771	2p/3p 1.714i 1.748i 1.487i 0.897i 1.159i 0.868i 1.208i 0.881i	9 30 3 0.07 1 0.15 5 1 2 3 3 4	₹ 709 (505 (3d 0∙0187 0∙0234	Total 16·1689 15·7867 7·4675 6·1132 6·2063 5·9411 6·2227 5·9944	sp Ba Totz 16·10 15·67 7·45 6·21 6·20 6·04 6·21 6·20	sis 1 39 86 02 85 28 28 57 05
Hydrog	gen 1s H	(2) 0.8394	; H(3) 0-	8530; H	I(4) 0·860	6; H(5) ()·8417; H	(6) 0 ·7045					

^a Molecule in *xy*-plane with *y* as C₂ symmetry axis. ^b Hydrogen numbered as for attached carbon atom.

basis of extended Hückel (EHM) and CNDO/2 calculations; the spectrum has yielded IPs at 8.11, 8.27, 9.58, and 10.01 eV with groups centred on 11.1, 12.8, 15.3, and 16.8 eV. Our minimal basis set calculation orbital energies (Table 3), through the use of Koopmans' theorem, reproduce the relative spacings of these IPs satisfactorily,* and lead to the correlation line based upon the first four IPs of $IP_{obs} = 0.546 IP_{calc} + 3.46 \text{ eV}$. respectively. The present correlation line slope shows the progressive decrease expected with the size of the molecule studied.23,24 This arises from the size of basis set in which the percentage difference from the Hartree-Fock limit is nearly constant (99.5%), but the absolute error is increasing, as also is the correlation energy which also would lead to correction in the right sense. None

²² R. Gleiter, V. Hornung, B. J. Lindberg, S. Högberg, and N. ¹² A. Gleiter, V. Holmang, B. J. Endberg, S. Hogberg, and N. Lozac'h, *Chem. Phys. Letters*, 1971, **11**, 401.
 ²³ M. H. Palmer, A. J. Gaskell, and R. H. Findlay, *J.C.S. Perkin II*, 1974, 778.
 ²⁴ S. Cradock, R. H. Findlay, and M. H. Palmer, *Tetrahedron*, 026 (2007)

1973, 29, 2173.

^{*} For the reasons described above the full basis set is probably somewhat unbalanced, and does not reproduce the groupings satisfactorily, although a correlation line $IP_{obs} = 0.585 IP_{calc} +$ 3.15 eV can be obtained.

TABLE 3

(a) Canonical orbital energies (eV) and character for 1,6,6a-trithiapentalene

sp Basis	spd + 3s' Basis	Character "	sp Basis	spd + 3s' Basis	Character ^a
a_1	a_1		<i>b</i> ₂	b_2	
$-2493 \cdot 9$	-2496.7	1s6a	-2490.0	$-2493 \cdot 4$	$1s_{1-6}$
-2490.0	$-2493 \cdot 4$	$1s_{1+6}$	-309.4	-309.1	$1s_{2-5}$
-310.2	-309.9	1s3a	-308.0	-307.5	$1_{s_{2}-4}$
309.3	$-309 \cdot 1$	159+5	-235.5	-236.3	$2s_{1}^{-4}$
-308.0	-307.5	15.4	$-181 \cdot 3$	-181.9	$2p_{e_0}$
-239.0	-239.4	25m	-177.9	-178.9	$2p_{1}$
-235.6	-236.3	25110	-177.9	-178.9	$\frac{-r_{1+6}}{2p_{1-6}}$
-181.3	-181.9	2000	31.67	-31.05	CC(2s)
177.9	-178.9	2	26:32	-25.87	SS(3c)
- 177.8	178.9	$\frac{-P_{1+6}}{2b}$	23.40	_ 22.04	CH(95, 1c)
33.66	- 32.91	$2P_{1-6}$	19.90		CH(2p, 1s)
	- 28.30	CC(2s)	- 17.93	16.66	CC(2b)
20 54	20 00	SS(2c)	17.20	15.64	CC(2p)
28.10	27-09	CS(05)			
		CH(95, 15)	-12.97	-13-01	$3p_{1-6} + 55(3p)$
21.15		CH(2p, 1s)			
		CH(2p, 1s)			
	- 10.42	CS(2p, 3p)	7.	7	
14.04	-14.32	CS(2p, 3p)			<u>.</u>
9.49	-8.91	$^{3}P_{1+6}$	-181.2	181.8	2p _{6a}
		2.	-177.8	-178.8	$2p_{1+6}$
-177.8	-178.8	$2p_{1-6}$	-16.63	-16.02	cc + cs
	-13.62	CS	-12.05	-11.37	3P6a
-8.82	-8.54	$3p_{1-6} + 2p_{3-4}$	-11.53	-10.84	$3p_{1+6}$
(b) Canonical ort	bital energies (eV) for	1,6-dioxa-6a-thiape	ntalene (sp) basis)		
<i>a</i> ₁	Character ª	b_2	Character	b_1	Character ª
-2496.0	1s62	-559.8	$1s_{1-6}$	$-183 \cdot 1$	$2p_{6n}$
-559.8	$1a_{1+a}$	311.4	15.5	-17.23	CO(2p) + CS(2p, 3p)
-311.4	15.15	-307.3	152-4	-14.02	$CO(2\phi) - CS(2\phi, 3\phi)$
-310.7	1522	$-183 \cdot 2$	$2p_{s_2}$	-12.05	SO(3p, 2p)
-307.3	15	-38.02	251-6		
$-183 \cdot 2$	$2p_{e_2}$	-29.24	$C\hat{C}(\hat{2}s)$		
-38.14	251 + 0	-23.94	$CH_{n-\epsilon}(2p, 1s)$	a_{\circ}	
-32.32	$(CC^{+} + CS)(2s, 3s)$	-20.24	$CH_{\bullet}^{-1}(2p, 1s)$		CO
-28.48	$3s_{\alpha} + CC(2s)$	-17.62	CC(2n)	9.16	2ϕ $-CC$
- 24.84	$CH_{a,a} + 3se_{a}$	17.04	$CO(2\pi/2\pi)$	0 20	-P1-6 00
-21.09	$(CH_{2+5} + CC)(2\pi)$	1_{s} - 13.54	$2 \frac{1}{2} $		
-21.00	$(CH_{2+5} + CC)(2p)$	1s)	$-r_{1-6} + 00(0p, 2p)$		
- 16.64	CO(25, 25)	10,			
- 15.79	CS(2p, 2p)				
- 10-78	(2p, 3p)				

-16.64-15.78 -11.78 $2p_{1+6}$

(c) Canonical orbital energies (eV) for 6-oxa-1,6a-dithiapentalene (sp basis)

Symmetry a'	a'	a'	<i>a</i> ′	Symmetry
$-2493 \cdot 8$	-238.9	-37.41	-20.54	$-181 \cdot 1$
-2492.0	-237.4	-33.31	-20.08	-179.6
-559.0	$-181 \cdot 2$	-30.48	-17.42	-16.72
-310.7	$-181 \cdot 2$	-16.51	-15.01	-28.27
-310.0	-179.7	-15.51	-12.96	-27.68
-309.6	-179.7	-15.02	-11.80	-23.93
-308.5		-13.46	-9.01	-23.42
-307.4		-11.08		-21.14

(d) Canonical orbital energies (eV) for 1,6a-dithia-6-azapentalene (sp basis)

Symmetry					-Symmetry
a'	a'	a'	a'	a'	a''
-249.36	-306.9	-33.56	-20.98	-13.01	-180.9
$-2488 \cdot 9$	-238.6	-31.80	-20.08	-8.80	-176.8
$-422 \cdot 3$	-234.6	-28.95	-19.49		16.07
-309.6	-180.9	-27.98	-16.98		-13.75
-309.3	-180.9	-26.43	-16.38		-11.45
-308.5	-177.0	-23.48	-15.42		-10.83
$-307 \cdot 2$	-176.9	-22.55	-14.92		-8.05

• Core and other localised orbitals are indicated by orbital type and the centre. Valency shell delocalised orbitals show the principal centres involved and the orbitals in parentheses. For simplicity this has been restricted to the C_{2v} symmetry molecules; use of the correlation diagram (Figure 2) enables the principal character of other orbitals to be determined.

the less, the present correlation reproduces the orbital groupings better than either the EHM or CNDO/2earlier calculations.*

The solid-phase XPS 17,25 separation of $2p_{6a}$ from $2p_{1.6}$ is 1.5, 1.5, and 0.9 eV in (1a), its 2,5-dimethyl derivative, and the 2,5-dimethyl derivative of (1b); a figure of 0.9 eV for (1b) is thus reasonable, and the present calculations indicate a smaller separation between these core levels in (1b) than (1a).

Conclusions on the Effect of the 3d Orbitals.-The above data show that although the addition of extra functions (3s' and 3d) to the minimal basis improves (*i.e.* lowers) the total energy, the effect is very small (ca. 0.03%) although much more in binding energy terms. However, almost all this can be attributed to the 3s' function and not to the 3d orbitals. On this basis alone we conclude that the 3d orbitals are not playing a major role in the bonding; their effect is to improve, but not

FIGURE 1 Comparisons of calculated and experimental IPs

alter the character, of the occupied molecular orbitals. This is what is usually defined as the role of polarising functions, which by virtue of the higher angular functions (d character) move some electron density off the internuclear axes. The results for the population analyses again show the small role of the 3d orbitals. There are strong indications that these conclusions are correct, since had the 3d functions played a major bonding role we would have expected that the addition of them would have led to better agreement with the experimentally measurable quantities such as IPs and the dipole moment. However, consistent with the polarising nature we find that the inclusion of $15 \ 3d$ orbitals in (1a) unbalances the basis set considerably. Further evidence that this is the case arises from the dipole moments for (1a) where the dipole moment goes from too large (minimal sp basis) to too small (spd + 3s'basis). Thus although the best total energies are obtained from the more flexible largest bases, it seems probable that the most balanced wave functions lie near the sp(or sp + 3s') ones, the extra 3s' orbital being advantageous for the larger second row atoms to

avoid undue inflexibility. The addition of polarisation functions to C. H. etc. would probably restore the balance to the largest set, but is unlikely to lead to more than marginal new information.

There is some confusion over the question of whether non-empirical calculations show evidence of 3d orbital participation in bonding by the second row elements Si, P, S, and Cl other than in a purely polarisation sense. Here we have defined bonding participation as being one where large eigenvectors (or populations) are apparent for the 3d orbital component. Some authors have concluded that the 3d orbitals are important in molecules not too dissimilar to this and our earlier work, on the basis of the lowering of energy when the six 3d orbitals are included in the molecular computation.²⁶ It is important that these energy differences are consistently analysed; within the gaussiantype orbital (GTO) system of six 3d orbitals there is an implicit s function (here called 3s') corresponding to $3d_{x^2+y^2+z^2} = 3d_{r^2}$. Unless this linear combination is removed by the standard method of contraction 11 of six 3d GTOs to 3s' plus the chemical five 3d orbitals (usually $3d_{x^2-y^2}$, $3d_{z^2}$, $3d_{xy}$, $3d_{xz}$, and $3d_{yz}$) then the point under discussion is not the same in the two procedures.

Nature of the Bonding .- The canonical molecular orbitals (CMO) (Table 3) are the solutions of the Roothaan-Hartree-Fock (RHF) equations and provide the best molecular energy via the variational freedom that they produce. It is possible to construct from these CMOs a set of localised bonds which do not alter either the total energy or the total electron density. There are circumstances where the CMOs are more relevant to the experimental data (e.g. in photoelectron spectroscopy) since each CMO has a unique energy; however, it is these localised molecular orbitals (LMO) which best fit the classical description of a chemical We have therefore carried out the transformbond. ation to LMO by taking linear combinations of the valency shell CMOs such that the sum of the squares of the distances of the LMO centroids was maximised.^{27,28} It is thus convenient to consider each method (CMO and LMO) of analysis of the bonding separately.

(a) The delocalised (canonical) orbitals. Although the present series of molecules (1a-c and e) contain varying numbers of electrons, there is a distinct similarity both between their molecular orbital types and those of naphthalene (Figure 2).29 Thus the orbitals show a clear separation into those where the dominant eigenvectors indicate bonding parallel or perpendicular to the long molecular axis (L). Thus the orbital $7a_{1g}$ (C₁₀H₈, energy 18.80 eV correlates with $16a_1$ [(1a), 20.21 eV], 25 D. T. Clark, D. T. Kilcast, and D. H. Reid, Chem. Comm.,

1971, 638. ²⁶ J. M. Howell, I. Absar, and J. R. Van Wazer, *J. Chem.*

 Phys., 1973, 59, 5895.
 ²⁷ J. M. Foster and S. F. Boys, Rev. Modern Phys., 1960, 32, 300; S. F. Boys, in 'Quantum Theory of Atoms, Molecules and the Solid State,' ed. P. O. Löwdin, Academic Press, New York, 1966.

²⁸ M. F. Guest, I. H. Hillier, and V. R. Saunders, *Trans. Faraday Soc.*, 1972, 68, 867.
 ²⁹ M. H. Palmer and S. M. F. Kennedy, following paper.

^{*} Non-empirical calculations seem to reproduce experimental groupings satisfactorily in other conjugated heterocyclic systems, e.g. the azines ²³ and azoles,²⁴ and when the known cross-sections for valency shell electrons are included in a line shape function, the experimental envelopes of intensity against energy in gas-phase XPS are reproduced.²¹

 $12a_1$ [(1c), 21.08 eV], etc. as C + CH bonding parallel to the long axis. The highest orbital, bonding along the long axis and symmetrical to the short axis is $7b_{2u}$ $(C_{10}H_8, 15.54 \text{ eV})$; in the pentalene derivatives this is destabilised, owing to the odd number of centres involved, in becoming the symmetrical lone pair orbital on sulphur [(1a), 8.49 eV] or oxygen [(1c), 11.78 eV].

FIGURE 2 Correlation diagram for orbital energies (eV)

Most of the other principal changes in orbital ordering can be explained in terms of the orbital energies of the atoms contributing to the delocalised orbitals; relevant figures at the Hartree-Fock limit 30 are C2s 19.20, C_{2p} 11·80; N_{2s} 25·72; N_{2p} 15·44; O_{2s} 33·86; O_{2p} 17·20; S_{3s} 23·94, S_{3p} 11·90 eV respectively.

(b) Localised orbital description. The LMO obtained (Table 4) were highly localised and were thus truncated, that is the remaining (small) fragments of other bonding centres were eliminated and the orbital s, p, d compositions re-normalised.³¹ The σ/π separation was not enforced, and the general observation that LMOs favour two bent (' banana ') bonds over $\sigma + \pi$ was obtained.³² Since these localised orbitals arise from the canonical orbitals, it is just as correct to regard these pairs of bent bonds as a $\sigma + \pi$ set.

Although we used the largest basis sets in these calculations for (1a, b, e; R = H) this choice will not

significantly affect the nature of the localised orbitals for other basis sets since the d orbital contributions are so small. The C hybridisation in the C-H and C-C (single bond) orbitals is close to sp^2 , while in those cases where bent bonds are formed the C hybrids in the C-X bond (X = C, N, or S) are close to sp^3 in all cases.³² In contrast, the hybrid orbitals from C in the C-O bonds, and those from the N, O, and S atoms all have very high p orbital character; the s orbital components in the latter atoms are largely localised. As in the discussion of the delocalised orbitals, these conclusions are understandable in terms of the free atom orbital energies (above), with bond orbitals being formed mainly from atomic orbitals of similar energy and bonding hybrid orbitals occurring where the s/p orbital separation is smaller (C, 7.4; N, 10.28; O, 15.66; S, 12.04 eV).30 Most of the bond orbitals are transferable within the series of molecules, since their kinetic energies are nearly constant for a given type; average values (a.u.) are C–H 1·186 \pm 0·006 [C–H(O) excepted], C–C σ 1·609 \pm 0.016 [C-C(O) excepted], C-C bent 1.425 ± 0.011 , C(2,5)-S(1,6) 1.769 \pm 0.002, C(3a)-S(6a) 1.801 \pm 0.003. The lone pair orbitals on oxygen and sulphur have similar values to those in phosphoryl and thiophosphoryl halides.²⁸ In contrast the S(6)-S(6a) kinetic energy varies with the atom Y in (1): 1.930 (Y = S), 1.909 (Y = NH), 1.784 (Y = O). This is clear evidence of the change in bonding across the S-S-O system, and together with the disposition of the bent bond (σ/π) pairs is an indication of a strong tendency towards the classical formulation (2a; X = S, Y = O) with the nitrogen compound probably less so (kinetic energy high), and the S-S-S compound non-classical (Ia). There is as yet insufficient data on the relative values of LMO kinetic energy and the factors which control it,* so that we are unable to determine from this method whether a bond exists at all between the S and O atoms. However the similarity in position of the two oxygen lone pair LMOs indicates that no S-O bond exists, and this is confirmed by the movement of the two S(6a) lone pair orbitals off the perpendicular plane through C(3a)-S(6a) and towards the O(1) side; that is, the system is adopting a dithiole electron configuration.

(c) Conclusions on the nature of the bonding. The similarity of much of the electronic structure to naphthalene is seen from the CMO picture, and it seems probable that the absence of aromatic character in these calculations of resonance energy is either that it does not exist in the form of that for naphthalene, or is obscured by the large amount of strain energy brought about by fusion of the two five-membered rings. The LMO picture clearly shows the change in bonding for (1) across the S-X, S-Y system with change in X and Y.

³⁰ E. Clementi, *IBM J. Res. Development*, 1965, 9, 2.
 ³¹ E. Switkes, R. M. Stevens, and W. N. Lipscomb, *J. Chem. Phys.*, 1969, 51, 2085; E. Switkes, W. N. Lipscomb, and M. D. Newton, *J. Amer. Chem. Soc.*, 1970, 92, 3847.
 ³² C. Edmiston and K. Rucdenberg, *J. Chem. Phys.*, 1965, 43, S97; U. Kaldor, *ibid.*, 1967, 46, 1981; M. D. Newton, E. Switkes, and W. N. Lipscomb, *ibid.*, 1970, 53, 2645; M. D. Newton and E. Switkes, *ibid.*, 1971, 54, 3179.

^{*} A relationship based upon the relative proportions of the bonding orbitals and their respective free atom energies would seem possible. Alternatively a relationship to the bond dissociation energies, after addition of the bond potential energy seems probable.

	1	ΓA	BLE	4		
-	-				-	-

Valency shell localised orbitals

(a) Valency shell localised orbitals in 1,6,6a-trithiapentalene

Pandaloontroo			Hybridis	ation (%)	Localisation	Position (Å)		Vinctio		
A-B	s	Þ	d	s	Þ	d	degree (%)	A	В	energy/a.u.
C(2)-H	30.3	69.6					99.25	0.670	0.260	1.1873
C(3) - H	$32 \cdot 2$	67.8					99.22	0.677	0.254	1.1875
$C(2), C(3)\sigma/\pi$	21.4	78.6		13.8	86.2		96.85	0.910	0.607	1.4200
C(3)C(3a)	$23 \cdot 8$	76.2		$32 \cdot 8$	67.3		98.51	0.694	0.724	1.6040
$S(1)C(2)\sigma$	7.4	87.6	$5 \cdot 0$	27.8	72.2		99.11	0.896	0.798	1.7684
S(6a)C(3a) o	10.5	$84 \cdot 2$	5.3	30.4	6 9 ·6		98.37	0.907	0.817	1.8040
S(6a)S(1)	0.6	95.0	4.4	17.6	80.0	$2 \cdot 4$	97.41	1.473	0.880	1.9298
$S(1)(LP) \sigma$	50.8	46.5	$2 \cdot 6$	50.8	46.5	$2 \cdot 6$	97.82	0.470		2.5106
$S(1)C(2)(LP) \circ \pi$	$4 \cdot 2$	95.0	0.8	$5 \cdot 2$	94.8		97.45	0.456	1.356	1.7623
S(6a) 3	26.0	$72 \cdot 1$	1.8		99.9		97.48	0.448	1.678	$2 \cdot 1254$
S(6a)(LP) °	49.9	47.3	2.8				94.7	0.427		

^a Nearly localised on S(1); principal eigenvectors given by: $0.228 (2p_{\pi})_{1+6} - 0.847 (3p_{\pi})_{1+6} - 0.282 (2p_{\pi})_{2+5}$. ^b Nearly localised on S6(a); principal eigenvectors given by: $-0.255(2s)_{6a} + 0.498 (3s)_{6a} + 0.201 (2p_{\pi})_{6a} - 0.195 (2p_{\sigma})_{6a} - 0.751 (3p_{\pi})_{6a} - 0.237 (2p_{\pi})_{3a}$. ^c $-0.350 (2s)_{6a} + 0.711 (3s)_{6a} - 0.114 (2p_{\sigma})_{6a} + 0.499 (3p_{\sigma})_{6a}$.

(b) Valency shell localised orbitals in 6,6a-dithia-1-azapentalene Character (%)

				(707						
Bonds/centres A-B	A			<u> </u>	В		Localisation	Posit	ion (Å)	Winetic
	s	Þ	d	s	Þ	d	degree (%)	A	AB	energy/a.u.
C(2)-H	33.6	66.4		100			99.32	0.677	0.256	1.1850
C(3)-H	31.4	68.6		100			99.20	0.682	0.278	1.1805
C(4) - H	31.7	68.3		100			99.21	0.677	0.253	1.1838
$\tilde{C}(5)-H$	30.3	69.7		100			99.25	0.672	0.258	1.1846
N(1)-H	38 ∙3	61.7		100			99.08	0.602	0.391	1.5304
C(2) - C(3)	26.5	73.5		24.7	75.3		98.43	0.676	0.694	1.6258
C(3) - C(3a) $\sigma + H$	12.1	87.9		$25 \cdot 4$	74.6		95.87	0.602	0.970	1.4362
C(3a) - C(4)	30.9	69.1		24.4	75.6		98.47	0.697	0.721	1.6042
C(4) - C(5)	12.8	87.2		19.8	80.2		97.57	0.627	0.899	1.4230
$\sigma + \pi$ C(2)-N(1) $\sigma + H$	18.6	81.4		14.9	85.1		98 .90	0.933	0.705	1.6962
S(6a) - C(3a)	11.0	83.2	5.7	28.9	71.1		98.06	0.921	0.799	1.8179
S(6) - C(5)	6.9	87.7	5.3	28.0	72.0		99.14	0.908	0.770	1.7666
S(6)(LP)	46.6	51.0	$2 \cdot 4$		-		97.70	0.460		2.4447
S(6) - S(6a)	16.7	80.9	$2 \cdot 4$	0.2	94.2	5.3	97.72	0.883	1.470	1.9085
S(6)-C(LP)	9.6	89.5	1.0	0.9	99.1		97.82	0.406	(1.498)	1.8729
S(6a)(LP)	$36 \cdot 4$	61.4	$2 \cdot 2$				85.83	0.450	(/	$2 \cdot 3248$
$\sigma + \pi$ N-S(LP) ^b	42.8	57.2		0.7	94.2	$5 \cdot 1$	97.11	0.618	(1·468)	1.9799

(c) Valency shell localised orbitals in 1-oxa-6,6a-dithiapentalene

			Charao	cter (%)						
Dendalaantraa		A			В		Localisation	Positi	on (Å)	Vinatia
A–B	s	 p	d	s	Þ	d	degree (%)	A	В	energy (a.u.)
C(2)-H	31.6	68.4		100	-		98.89	0.682	0.248	1.2035
C(3)-H	31.8	68.1		100			99.22	0.679	0.252	1.1840
C(4)-H	31.9	68.1		100			99.20	0.674	0.257	1.1901
C(5)-H	30.9	69.1		100			99.28	0.665	0.266	1.1893
C(2) - C(3)	29.4	70.6		25.3	74·7		98.21	0.686	0.683	1.6510
C(3) - C(3a)	11.5	88.5		$23 \cdot 3$	76.7		97.16	0.653	0.912	1.4305
$\sigma + \pi$ C(3)-C(4)	31.0	69 .0		$25 \cdot 1$	74.9		98.44	0.694	0.724	1.6017
C(4) - C(5)	12.9	87.1		18.9	81 ·1		98.13	0.664	0.859	1.4219
O(1)-C(2)	11.0	89.0		15.2	84.8		99.41	0.549	0.849	1.9930
$G + \pi$ S(6a)-C(3a)	$9 \cdot 1$	85.6	5.4	28.3	71.7		98.53	0.918	0.801	1.7823
S(6) - C(5)	$7 \cdot 1$	87.2	5.7	26.9	73.1		99.06	0.907	0.763	1.7708
S(6) - S(6a)	11.6	85.9	2.5	4.8	$92 \cdot 2$	3.0	98.48	1.063	1.289	1.7835
O(1)(LP)	47.7	$52 \cdot 3$					98.37	0.309		2.9582
O(1)(LP)	36.2	$63 \cdot 8$					98.02	0.384		2.7122
S(6a)(LP)	34.0	64.0	$2 \cdot 0$				97.19	0.470		$2 \cdot 2967$
$s + \pi$ S(6)(LP) $s + \pi$	30.5	67.7	1.8				97.71	0.450		2.2168

^a Nearly localised on sulphur (see text); principal eigenvectors given by: $0.300 (3s)_6 - 0.847 (3p)_6 - 0.238 (2p)_5 + 0.227 (2p)_6$. ^b Nearly localised on nitrogen (see text); principal eigenvectors given by: $-0.577 (2s)_1 + 0.630 (2p_x)_1 - 0.340 (3p_x)_{6a}$.

Thus for (1a), two S-S bonds exist; for (1e) the S-N bond is weak, while in (1b) the S-O bond is absent and the molecule is best represented as (2a; X = S, Y = O). The occurrence of two lone pair orbitals at S(6a) in (1a; X = Y = S) is indicative of an overall trigonal bipyramid structure for S(6a); although it is conventional to invoke extensive 3d orbital participation to account for this, it is worth noting that in ClF₃, recent calculations,33 similar in nature to the present work, have shown that the 3d orbital population is not essential to the bonding scheme. We are thus likely to see a range of levels of 3d orbital participation in compounds of second row elements. Here (1a) the level is particularly low, and this may in part result from the cyclic system allowing other routes for the interchange of electron density between the centres.

APPENDIX

The molecular binding energy (and total energy) is numerically large and gives comparatively little information concerning the stability of the molecule (except to atomisation) and does not give any real indication of properties like aromatic character. The concept of resonance energy has usually been based upon thermochemical data or empirical calculations. In the present method, the total energy of a sequence of molecules which contain fragments of the classical structures of (la—e) were determined and this enables an estimate of the resonance

³³ A. Breeze, D. W. J. Cruickshank, and D. R. Armstrong, J.C.S. Faraday II, 1972, 2144.

energy of the molecule [e.g. (1a)] to be obtained by difference between the molecular energy of (1a) and the sum of the fragments.

The procedure is based upon the determination of C-H, C-C, C=C, C-S, and C=S bond energies. Thus the total energy of methane ($E_{CH_4} = -40.10325$ a.u.) yields the energy of the C-H bond ($\dot{E}_{CH} = \frac{1}{4}E_{CH_4} = -10.02581 \text{ a.u.}$); insertion of this value into the ethylene molecule $(E_{C_4 H_4} =$ $E_{0=0} + 4E_{OH} = -77.83143$ a.u.) yields $E_{0=0} = -37.72818$ a.u. Similar procedures with a twisted molecule of buta-1,3-diene (where the π -orbitals are perpendicular to each other) yields $E_{C-C} = -18.89797$ a.u. for $C_{sp^3}-C_{sp^3}$. Other molecules necessary for the present work, and the bond energies (a.u.) obtained, are: CH_2 =CHOH ($E_{0-0} =$ –46·7451), CH₂=CHSH ($E_{C-S}^{sp} = -207 \cdot 78481$, $E_{C-S}^{spd} =$ -207.8391) both these molecules have the X-H (X = O or S) bond out-of-plane; H_2O ($E_{OH} = -37.8999$); NH₃ ($E_{NH} = -18.6733$); H_2S ($E_{SH}^{sp} = -198.9221$, $E_{SH}^{spd} = -198.9702$); CH₂O ($E_{O=O} = -93.4592$); CH₂S $(E_{C=S}^{sp} = -415.5437,$ $E_{\text{C=S}}^{spd} = -415.6309$; H₂S₂ $E_{\rm S-S}^{spd} = -396.8172$; $(E_{8-8}sp = -396.7094)$ HOSH $E_{\rm O-S}^{spd} = -235.6923$; $(E_{\text{O-S}}^{sp} = -235.6416,$ HSNH, $(E_{\text{S-N}}^{sp} = -216.4159; E_{\text{S-N}}^{spd} = -216.4655).$ All the calculations were run using the experimental geometry where known, and others were derived from known bond lengths and angles. Most importantly, all the calculations used *identical* basis sets for the atoms to those of the main work in this paper. Work with other basis sets showed that the resonance energies are reproducible to within 10% for selected molecules (e.g. benzene and pyrrole).

[4/1140 Received, 12th June, 1974]